

1.
$$4x^3 \to kx^2 \text{ or } 2x^{\frac{1}{2}} \to kx^{-\frac{1}{2}}$$
 (k a non-zero constant) M1 $12x^2, +x^{-\frac{1}{2}}$, $(-1 \to 0)$ A1, A1, B1 (4)

2.	Question Number	Scheme	Marks
	1. (a)	$f'(x) = 3x^2 + 6x$	B1
	(-)	f''(x) = 6x + 6	M1, A1cao (3)

Notes cao = correct answer only

1(a)	
Acceptable alternatives include $3x^2 + 6x^1$; $3x^2 + 3 \times 2x$; $3x^2 + 6x + 0$	B1
$3x^2 + 6x^1$; $3x^2 + 3 \times 2x$; $3x^2 + 6x + 0$	100
Ignore LHS (e.g. use [whether correct or not] of $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$)	
$3x^2 + 6x + c$ or $3x^2 + 6x + c$ onstant (i.e. the written word constant) is B0	,
M1 Attempt to differentiate their $f'(x)$; $x^n \to x^{n-1}$.	M1
$x^n \to x^{n-1}$ seen in at least one of the terms. Coefficient of x ignored for the method mark.	
$x^2 \to x^1$ and $x \to x^0$ are acceptable.	
Acceptable alternatives include	A1
$6x^1 + 6x^0$; $3 \times 2x + 3 \times 2$	cao
6x + 6 + c or $6x + 6 + c$ onstant is A0	

3.	i)	$y = 6x^{3} + 4x^{-\frac{1}{2}} + 5x$ $\frac{dy}{dx} = 18x^{2} - 2x^{-\frac{3}{2}} + 5$	M1 A1 A1 [4]	$\frac{4}{\sqrt{x}} = 4x^{-\frac{1}{2}} \text{ soi}$ Attempt to differentiate, any term correct Two correct terms Fully correct, no "+c"	
	ii)	$\frac{d^2y}{dx^2} = 36x + 3x^{-\frac{5}{2}}$	M1 A1 [2]	Attempt to differentiate their $\frac{dy}{dx}$ cao www in either part	Any term still involving x correct – follow through from their expression for the M mark only

Question	Answer	Marks	Guidance			
(i)	$-10x^{-6}$ isw	B1 B1 [2]	for -10 for x^{-6} ignore $+c$ and $y =$	if B0B0 then SC1 for $-5 \times 2x^{-5-1}$ or better soi		
(ii)	$y = x^{\frac{1}{3}} \text{ soi}$ kx^{n-1} $\frac{1}{3}x^{-\frac{2}{3}} \text{ isw}$	B1 M1 A1	condone $y' = x^{\frac{1}{2}}$ if differentiation follows ft their fractional n ignore $+c$ and $y =$	allow 0.333 or better		

5.	(i)	$f(x) = 6x^{-2} + 2x$ $f'(x) = -12x^{-3} + 2$	M1 A1 B1 [3]	kx^{-3} obtained by differentiation $-12x^{-3}$ 2x correctly differentiated to 2	ISW incorrect simplification after correct expression
	(ii)	$f''(x) = 36x^{-4}$	Mi	Attempt to differentiate their (i) i.e. at least one term "correct"	Allow constant differentiated to zero
			A1	Fully correct cao No follow through for A mark	ISW incorrect simplification after correct expression

$y = 5x^{-2} - \frac{1}{4}x^{-1} + x$	M1	x^{-2} used for $\frac{1}{x^2}$ OR x^{-1} used for $\frac{1}{x}$ soi,	
$\frac{dy}{dx} = -10x^{-3} + \frac{1}{4}x^{-2}$	-1	OR x correctly differentiated	$\frac{dy}{dx} = -10x^{-3} + 4x^{-2} + 1$ and then the correct answer
dx 4	Al	kx^{-3} or kx^{-2} from differentiating	This is M1 A1 A1 A0
	Al	Two fully correct terms	4x ⁻¹ is NOT a misread
	Al	Completely correct	
		4	
(ii) $\frac{d^2y}{dx^2} = 30x^{-4} - \frac{1}{2}x^{-3}$	MI	Attempt to differentiate their $\frac{dy}{dx}$ (one term	Allow a sign slip in coefficient for M mark
		correctly differentiated)	
	Al	2 Completely correct	NB Only penalise "+ c" first time seen in the question

B1	2.1
M1	1.1b
Al	1.1b
A1*	2.5
	(4 n

8.

		1	(10 marks)
	2y - 7x - 27 = 0	$\pm k \left(2y - 7x - 27\right) = 0 \operatorname{cso}$	A1 (5)
	y-'10'='3.5'(x1)	Uses their tangent gradient which must come from calculus with $x = -1$ and their numerical y with a correct straight line method. If using $y = mx + c$, this mark is awarded for correctly establishing a value for c .	M1
	$\left(\frac{dy}{dx}\right) = 1 - \frac{3}{2} + \frac{6}{1} = 3.5$	M1: Substitutes $x = -1$ into their expression for dy/dx A1: 3.5 oe cso	M1A1
(b)	At $x = -1$, $y = 10$	Correct value for y	B1
	$\frac{dy}{dx} = x - \frac{3}{2} + \frac{6}{x^2}$ oe e.g. $\frac{2x^3 - 3x^2 + 12}{2x^2}$	ddM1: $x^n o x^{n-1}$ or $2 o 0$ Dependent on both previous method marks. A1: $x - \frac{3}{2} + \frac{6}{x^2}$ oe and isw Accept $1x$ or even $1x^1$ but not $\frac{2x}{2}$ and not x^0 . If they lose the previous A1 because of an incorrect constant only then allow recovery here and in part (b) for a correct derivative.	ddM1A1
	$\frac{x^3 - 3x^2 + 4x - 12}{2x} = \frac{x^2}{2} - \frac{3}{2}x + 2 - 6x^{-1}$	M1: Attempt to divide each term by $2x$. The powers of x of at least two terms must follow from their expansion. Allow an attempt to multiply by $2x^{-1}$ A1: Correct expression. May be un-simplified but powers of x must be combined e.g. $\frac{x^2}{2}$ not $\frac{x^3}{2x}$	M1A1
(a)	$(x^2+4)(x-3) = x^3 - 3x^2 + 4x - 12$	Attempt to multiply out the numerator to get a cubic with 4 terms and at least 2 correct	M1

9.
$$P(4, -1) \text{ lies on } C \text{ where } f'(x) = \frac{1}{2}x - \frac{6}{\sqrt{x}} + 3, \ x > 0$$

$$f'(4) = \frac{1}{2}(4) - \frac{6}{\sqrt{4}} + 3; = 2$$

$$T: \ y - -1 = 2(x - 4)$$

$$T: \ y = 2x - 9$$

$$M1; A1$$

$$dM1$$

$$A1$$

10.	$\left[\frac{dy}{dx} = \right] 32x^3 \text{ c.a.o.}$	M1		
	substitution of $x = \frac{1}{2}$ in their $\frac{dy}{dx}$	M1	[= 4]	must see kx^3
	grad normal = $\frac{-1}{their4}$	M1		their 4 must be obtained by calculus
	when $x = \frac{1}{2}$, $y = 4\frac{1}{2}$ o.e.	B1		
	$y-4\frac{1}{2} = -\frac{1}{4}(x-\frac{1}{2})$ i.s.w	A1	$y = -\frac{1}{4}x + 4\frac{5}{8}$ o.e.	

$\frac{dy}{dy} = -12x^{-3}$	Ml	Attempt to differentiate (i.e. kx ⁻³ seen)	"+ C" is A0
$\frac{1}{dx} = -12x$	Al	Correct derivative	
When $x = 2$, $\frac{dy}{dx} = -\frac{3}{2}$	A1	Correct value of $\frac{dv}{dx}$. Allow equivalent fractions.	
Gradient of normal = $\frac{2}{3}$	B1 FT	Follow through their evaluated $\frac{dy}{dx}$	Must be processed correctly
When $x = 2$, $y = -\frac{7}{2}$	Bl	Correct y coordinate, accept equivalent forms	
$y + \frac{7}{2} = \frac{2}{3}(x-2)$	Ml	Correct equation of straight line through (2, their evaluated y), any non-zero gradient	
4x - 6y - 29 = 0	Al	Correct equation in required form i.e. k(4x - 6y - 29) = 0 for integer k. Must have	
	[7]	"=0".	

2.	Solution	Mark	Total	Comment
	Gradient of the line $3y - 2x = 1$ is $\frac{2}{3}$	B1		(Gradient) $\frac{2}{3}$ seen or used. Condone 0.66, 0.67 or better for $\frac{2}{3}$.
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}x^{-0.5}$	B1		Correct differentiation of $x^{\frac{1}{2}}$
	At A , $\frac{1}{2}x^{-0.5} = \frac{2}{3}$	M1		c's $\frac{dy}{dx}$ expression = c's numerical gradient of given line.
	$A\left(\frac{9}{16},\frac{3}{4}\right)$	A1		Correct exact coordinates of A
	Eqn of tang at A: $y - \frac{3}{4} = \frac{2}{3} \left(x - \frac{9}{16} \right)$	A1	5	ACF eg $y = \frac{2}{3}x + \frac{3}{8}$ or eg $3y - 2x = \frac{9}{8}$ must be exact
	Total		5	

Solution	Mark	Total	Comment
$\frac{1}{x^2} = x^{-2}$	B1		$\frac{1}{x^2} = x^{-2}$. PI by its correct derivative
$(y = \frac{1}{x^2} + 4x)$ $(\frac{dy}{dx} =) -2x^{-3} + 4$	M1		Correct differentiation of either $\frac{1}{x^2}$ or $4x$
X CX	A1	3	Correct $\frac{dy}{dx}$ ACF
When $x=-1$, $\frac{dy}{dx} = -2(-1)^{-3} + 4 \ (=6)$	M1		Attempt to find the value of $\frac{dy}{dx}$ when $x = -1$
Gradient of normal = $-\frac{1}{6}$	m1		Correct use of $m \times m' = -1$, with c's value
6			of $\frac{dy}{dx}$ when $x = -1$
(Eqn of normal) $y+3=-\frac{1}{6}(x+1)$	A1F	3	A correct ft equation for normal with signs
			simplified; ft on c's $\frac{dy}{dx}$ expression in (a)
			SC $\frac{dy}{dx}$ = const in (a), mark (b) as M1A1F
			eg for $\frac{dy}{dx}$ = 4 in (a); grad of normal = $-\frac{1}{4}$
			(M1), eqn $y + 3 = -\frac{1}{4}(x+1)$ (A1F)
$-2x^{-3}+4=-12$	M1		C's answer to (a) equated to -12 (or to 12)
$x^{-3} = 8$	A1F		PI Correct rearrangement of
			$ax^{-n} + b = \pm 12$ or $\frac{a}{x^n} + b = \pm 12$ OE to
			form $x^{-n} = q$ or to form $x^n = p$, but only
x = 0.5	A1		ft in case of <i>n</i> positive $x = 0.5$ OE
When $x = 0.5$, $y = 6$	AlF		Correct ft y coordinate from $y_c = x_c^{-2} + 4x_c$. Only ft if values are exact.
(Eqn of tangent) $y-6 = -12(x-0.5)$ (or eg $y = -12x+12$)	A1	5	Correct tangent equation ACF Apply ISW after ACF
(or eg $y = -12x + 12$)	1	11	TEV IS III

(i)	$y' = 3x^2 - 5$	M1	
W III	their $y' = 0$	M1	_
	(1.3, -4.3) cao	A1	or A1 for $x = \pm \sqrt{\frac{5}{3}}$ oe soi
	(-1.3, 4.3) cao	A1	allow if not written as co-ordinates if pairing is clear
		[4]	Farming as a seem
(ii)	crosses axes at (0, 0)	B1	condone x and y intercepts not written as co-ordinates; may be on graph
	and $(\pm\sqrt{5},0)$	B1	$\pm (2.23 \text{ to } 2.24) \text{ implies } \pm \sqrt{5}$
	sketch of cubic with turning points in correct	B1	
	quadrants and of correct orientation and passing through origin		
	x-intercepts $\pm \sqrt{5}$ marked	B1	may be in decimal form (±2.2)
		[4]	
(iii)	substitution of $x = 1$ in $f'(x) = 3x^2 - 5$	M1	
	-2	A1	-14 10
	$y - 4 = (\text{their f }'(1)) \times (x - 1) \text{ oe}$	M1*	or $-4 = -2 \times (1) + c$
	$-2x-2=x^3-5x$ and completion to given result www	M1dep*	
	use of Factor theorem in $x^3 - 3x + 2$ with -1 or ± 2	M1	or any other valid method; must be shown
	x = -2 obtained correctly	Al	
		[6]	

$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 - 9x^{-2}$	Bl	x ² from differentiating first term	
	Ml	kox ⁻²	
	A1	$-9x^{-2}$ (no + c)	
Gradient of line = 8	B1	()	
$x^2 - 9x^{-2} = 8$	M1	Equate their $\frac{dy}{dx}$ to 8 (or their gradient of line, if clear)	Note: If equated to +/-1/8 then M0 but the next M1 and its dependencies are available
$x^4 - 8x^2 - 9 = 0$			
$k^2 - 8k - 9 = 0$	*M1	Use a correct substitution to obtain a 3 term quadratic or factorise into 2 brackets each containing x^2	If no substitution stated and treated as a quadratic (e.g. quadratic formula), no more marks until square rooting seen
(k-9)(k+1) = 0	DM1	Correct method to solve 3 term quadratic – dependent on previous M1	SC: If spotted after first five marks- (3, 12) B1
k = 9 (don't need k = -1)	A1	No extras	(-3, -12) B1 Justifies exactly two solutions B3
x = 3, -3	DM1	Attempt to find x by square rooting – accept one value	
y = 12, -12	A1 [10]	No extras	

16.

17.

7.	(a)(i)	(Increasing \Rightarrow) $\frac{dy}{dx} > 0$ $20x - 6x^2 - 16 > 0$ either $\Rightarrow 6x^2 - 20x + 16 < 0$	M1		correct interpretation of y increasing
		$\Rightarrow 6x^{2} - 20x + 16 < 0$ or (2) $(10x - 3x^{2} - 8) > 0$ $\Rightarrow 3x^{2} - 10x + 8 < 0$	Al	2	must see at least one of these steps before final answer for A1 CSO AG no errors in working
	(ii)	(3x-4)(x-2)	M1	-	correct factors or correct use of quadratic equation formula as far as $\frac{10 \pm \sqrt{4}}{6}$
		CVs are $\frac{4}{3}$ and 2	Al		condone $\frac{8}{6}$ and $\frac{12}{6}$ here but not in final line
		$\begin{array}{c c} & & & & & & & & & & & \\ \hline \hline \frac{4}{3} & & & & & & & \\ \hline \frac{4}{3} & & & & & & \\ \hline \end{array}$	M1		sketch or sign diagram
		$\frac{4}{3} < x < 2$	A1	4	or $2 > x > \frac{4}{3}$
					accept $x < 2$ AND $x > \frac{4}{3}$
		Mark their final line as their answer			but not $x < 2$ OR $x > \frac{4}{3}$ nor $x < 2$, $x > \frac{4}{3}$

(b)(i)	$x = 2$; $\left(\frac{dy}{dx} = \right) 40 - 24 - 16$	M1		sub $x = 2$ into $\frac{dy}{dx}$ and simplify terms
	$\frac{dy}{dx} = 0 \implies \text{tangent at } P \text{ is parallel to}$ the x-axis	A1	2	must be all correct working plus statement
(ii)	$x = 3$; $\frac{dy}{dx} = 20 \times 3 - 6 \times 3^2 - 16$ (= 60-54-16) = -10	M1 A1		must attempt to sub $x = 3$ into $\frac{dy}{dx}$
	Gradient of normal $=\frac{1}{10}$	A1√		-1 "their -10"
	Normal: $(y-1)=$ 'their grad' $(x-3)$	ml		normal attempted with correct coordinates
	$y+1=\frac{1}{10}(x-3)$	Al		used and gradient obtained from their $\frac{dy}{dx}$ value any correct form, eg $10y = x - 13$ but must simplify $$ to $+$
	(Equation of tangent at P is) $y = 3$	В1		must simplify — to .
	x = 43	Al	7	CSO; $\Rightarrow R(43,3)$
	Total		15	

l.(a)	Substitutes $x = 2$ into $y = 20 - 4 \times 2 - 4 \times 2 = 20$	$-\frac{18}{2}$ and gets 3	B1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -4$	$+\frac{18}{x^2}$	M1 A1
	Substitute $x = 2 \Rightarrow \frac{dy}{dx} = \left(\frac{1}{2}\right)$ then	finds negative reciprocal (-2)	dM1
		Method 2 Or: Check that $(2, 3)$ lies on the line $y = -2x + 7$	dM1
	to deduce that $y = -2x + 7$ *	Deduce equation of normal as it has the same gradient and passes through a common point	A1*
		30 3	(
(b)	Put $20-4x-\frac{18}{x}=-2x+7$ and simplify to		M1 A1
	Or put $y = 20 - 4 \left(\frac{7 - y}{2} \right) - \frac{18}{\left(\frac{7 - y}{2} \right)}$ to	o give $y^2 - y - 6 = 0$	
	(2x-9)(x-2) = 0 so $x = 0$ or	(y-3)(y+2) = 0 so $y =$	dM1
	$x = \frac{9}{2}, y = -2$		A1, A1
	977.1		(11 marks)

19.	5(a)		Bl		For either 6 or $6x^0$
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 6 - 3x^{\frac{1}{2}}$	M1		$Ax^{\frac{3}{2}-1}$, $A\neq 0$ OE
			Al	3	$6-3x^{\frac{1}{2}}$ or $6-3\sqrt{x}$ with no '+c' [If unsimplified here, A1 can be awarded retrospectively if correct simplified expression is seen explicitly in (b)(i).]
	(b)(i)	$6-3x^{\frac{1}{2}}=0$	M1		Equating c's $\frac{dy}{dx}$ to 0 PI by correct ft
		$6 - 3x^{\frac{1}{2}} = 0$ $x^{\frac{1}{2}} = 2 \Rightarrow x = 2^2$	1		rearrangement of c's dy/dx=0 $x^{\frac{1}{2}} = k$ (k>0), to $x = k^2$. PI by correct
		x 2 -> x - 2	ml		value of x if no error seen
		M(4, 8)	Al	3	SC If M0 award B1 for (4, 8)
	(ii)	Eqn of normal at M is $x = 4$	BIF	1	Ft on $x = c$'s x_M
	(c)(i)	When $x = \frac{9}{4}$, $\frac{dy}{dx} = 6 - 3 \times \frac{3}{2} = \frac{3}{2}$	M1		Attempt to find $\frac{dy}{dx}$ when $x = \frac{9}{4}$
		Gradient of normal at $P = -\frac{2}{3}$	ml		$m \times m' = -1$ used
		Eqn of normal: $y - \frac{27}{4} = -\frac{2}{3} \left(x - \frac{9}{4} \right)$	Al		ACF eg $y = -\frac{2}{3}x + \frac{33}{4}$
		$12y - 81 = -8x + 18 \Rightarrow 8x + 12y = 99$	Al	4	Coeffs and constant must now be positive integers, but accept different order eg $12y + 8x = 99$
	(ii)	8(4) + 12y = 99	M1		Solving c's answer (b)(ii), (must be in form $x =$ positive const), with c's answer (c)(i). PI by correct earlier work and correct coordinates for R .
		$R\left(4,\frac{67}{12}\right)$	Al	2	Accept 5.58 or better as equivalent to $\frac{67}{12}$
		Total		13	

20.	(i)	$\frac{dy}{dx} = 6 - 2x$	MI Al		Attempt to differentiate $\pm y$ Correct expression cao	One correct non-zero term
		When $x = 5$, $6 - 2x = -4$	мп		Substitute $x = 5$ into their $\frac{dy}{dx}$	
		When $x = 5$, $y = 12$	B1		Correct y coordinate	
		y-12 = -4(x-5)	М		(5, men y), men non-zero, munercar	Allow $\frac{y-12}{x-5}$ = their gradient
		4x + y - 32 = 0	Al	6	<u></u>	If using $y = mx + c$ must attempt at evaluating c Allow any correct form e.g. $0 = 2y + 8x - 64$ etc.
	(ii)	Q is point (8, 0)	Blft		ft from line in (i)	3
		Midpoint of $PQ = \left(\frac{5+8}{2}, \frac{12+0}{2}\right)$	М		Uses $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$ o.e. for their P,Q	(13 12)
		$-\left(\frac{13}{2},6\right)$	Al	3		Do not accept $\left(\frac{13}{2}, \frac{12}{2}\right)$
	(iii)	6 - 2x = 0	м		Solution of their $\frac{d}{dx} = 0$	Alternatives for Method Mark a) attempts completion of square with $\pm (x-3)^2$
		(Line of symmetry is) $x = 3$	Al	2		b) attempts to solve quadratic (usual scheme) and to find the mid-point of the two roots
	100.00					c) attempts to use $x = -\frac{b}{2a}$ (allow one sign slip on substitution)
	(iv)	x<3	М			May solve $\frac{dy}{dx} = 0$ then use $\frac{d^3y}{dx^3} < 0$ implies maximum point for the method mark, or sketch of curve
			Al	2		Allow x≤3
21.	(i)	$\frac{dy}{dx} = 6 - 2x$	M1 A1		Attempt to differentiate $\pm y$ Correct expression cao	One correct non-zero term
		When $x = 5$, $6 - 2x = -4$	M1		Substitute $x = 5$ into their $\frac{dy}{dx}$	
		When $x = 5$, $y = 12$	B1		Correct y coordinate	
		y - 12 = -4(x - 5)	M1		Correct equation of straight line through (5, their y), their non-zero, numerical gradient	Allow $\frac{y-12}{x-5}$ = their gradient
		4x + y - 32 = 0	A1	6	Shows rearrangement to correct form	If using $y = mx + c$ must attempt at evaluating c Allow any correct form e.g. $0 = 2y + 8x - 64$ etc.
	(ii)	Q is point (8, 0)	B1ft		ft from line in (i)	2.0
		Midpoint of $PQ = \left(\frac{5+8}{2}, \frac{12+0}{2}\right)$	M1		Uses $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ o.e. for their P,C	()
		$=\left(\frac{13}{2},6\right)$	A1	3		Do not accept $\left(\frac{13}{2}, \frac{12}{2}\right)$
	iii)	6 - 2x = 0	M1		Solution of their $\frac{dy}{dx} = 0$	Alternatives for Method Mark a) attempts completion of square with $\pm (x-3)^2$
		(Line of symmetry is) $x = 3$	A1	2		 attempts to solve quadratic (usual scheme) and to find the mid-point of the two roots
					Allow from $\pm [16 - (x - 3)^2]$, $\pm [6 - 2x = 0]$	c) attempts to use $x = -\frac{b}{2a}$ (allow one sign slip on substitution)
	(iv)	x < 3	M1		x < their3 or x > their3 OR attempt to	May solve $\frac{dy}{dx} = 0$ then use $\frac{d^2y}{dx^2} < 0$ implies maximum
					1 1 dv 0	-
					solve their $\frac{dy}{dx} > 0$	point for the method mark, or sketch of curve

2	2	
_	_	•

3(a)	$\left(\frac{\mathrm{d}V}{\mathrm{d}t}\right) = \frac{3t^2}{4} - 3$	M1	_	one of these terms correct
	$\left(dt \right) 4$	A1	2	all correct (no + c etc)
(b)(i)	$t = 1 \Rightarrow \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{3}{4} - 3$	M1		substituting $t = 1$ into their $\frac{dV}{dt}$
	$=-2\frac{1}{4}$	Alcso	2	(-2.25 OE) BUT must have $\frac{dV}{dt}$ correct
(ii)	Volume is decreasing when $t = 1$ because $\frac{dV}{dt} < 0$	E1√	1	must have used $\frac{dV}{dt}$ in (b)(i) or starts again must state that $\frac{dV}{dt} < 0$ (or $-2\frac{1}{4} < 0$ etc)
	dt dt			ft increasing plus explanation if their $\frac{dV}{dt} > 0$
(c)(i)	$\left(\frac{\mathrm{d}V}{\mathrm{d}t} = 0 \Rightarrow\right) \frac{3t^2}{4} - 3 = 0$ $\Rightarrow t^2 = 4$	MI		PI by "correct" equation being solved
	$\Rightarrow t^2 = 4$	A1√		obtaining $t^n = k$ correctly from their $\frac{dV}{dt}$
	t=2	Alcso	3	withhold if answer left as $t = \pm 2$
(ii)	$\left(\frac{\mathrm{d}^2 V}{\mathrm{d}t^2}\right) = \frac{3t}{2}$	B1√		(condone unsimplified) If their $\frac{dV}{dt}$
	When $t = 2$, $\frac{d^2 V}{dt^2} = 3$ or $\frac{d^2 V}{dt^2} > 0$	M1		ft their $\frac{d^2V}{dt^2}$ and value of t from (c)(i)
	⇒ minimum	Alcso	3	
	Tota	I	11	

23.		(dv)	Ml		one term correct
25.	(a)(i)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x} = \right) 5x^4 - 6x + 1$	M1 A1		another term correct
		(dx)	A1	3	all correct (no $+ c$ etc)
	(ii)	$\left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right) = 20x^3 - 6$	B1√	1	FT 'their' $\frac{dy}{dx}$
	(b)	$x = -1 \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 5(-1)^4 - 6(-1) + 1 (= 12)$ $\Rightarrow y = 12(x+1)$	M1		must sub $x = -1$ into 'their' $\frac{dy}{dx}$
		$\Rightarrow y = 12(x+1)$	Alcso	2	any correct form with $(x-1)$ simplified
			little publication		condone $y = 12x + c$, $c = 12$
	(c)	$x = 1 \implies \frac{dy}{dx} = 5 - 6 + 1$ $\frac{dy}{dx} = 0 \implies \text{stationary point}$	M1		sub $x = 1$ into their $\frac{dy}{dx}$
		$\frac{dy}{dy} = 0 \implies$ stationary point	Alcso		shown = 0 plus correct statement
		when $x = 1$, $\frac{d^2 y}{dx^2} = 14$			or $\frac{d^2y}{dx^2} = 20 - 6 > 0$
		\Rightarrow (B is a) minimum (point)	E1	3	\Rightarrow (B is a) minimum (point)
					or $\frac{d^2y}{dx^2} = 20 - 6 > 0$ $\Rightarrow (B \text{ is a) minimum (point)}$ must have correct $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for E1

24.	$6x^2 + 18x - 24$	B1		
	their $6x^2 + 18x - 24 = 0$ or > 0 or ≥ 0	M1		or sketch of $y = 6x^2 + 18x - 24$ with attempt to find x-intercepts
	-4 and $+1$ identified oe $x < -4$ and $x > 1$ cao	A1 A1	or $x \le -4$ and $x \ge 1$	if B0M0 then SC2 for fully correct answer
		[4]		answer

25.	6(a)	$\sqrt{x} = x^{0.5}$	BI		$\sqrt{x} = x^{0.5}$ or $\sqrt{x} = x^{\frac{1}{2}}$ seen or used
		$\frac{12 + x^2 \sqrt{x}}{x} = \frac{12 + x^{2.5}}{x}$ $= 12x^{-1} + x^{1.5}$	B1		$12x^{-1}$ or $p = -1$
			B1	3	$x^{1.5}$ or $q = \frac{3}{2}$ (=1.5)
(I	b)(i)	$\frac{dy}{dx} = -12x^{-2} + 1.5x^{0.5}$	B1F		Ft on c's p only if c's p is a negative integer
		$+1.5x^{0.5}$	BIF	2	Ft on c's q only if c's q is a pos non- integer
	(ii)	When $x = 4$, $y = 11$	B1		8
		When $x = 4$, $\frac{dy}{dx} = \frac{-12}{16} + 3 = \frac{9}{4}$	M1		Attempt to find $\frac{dy}{dx}$ when $x = 4$ PI
		Gradient of normal = $-\frac{4}{9}$	ml		$m \times m' = -1$ used
		Eqn of normal: $y - 11 = -\frac{4}{9}(x - 4)$	Al	4	ACF eg $4x + 9y = 115$
	(iii)	At St Pt $\frac{dy}{dx} = -12x^{-2} + 1.5x^{0.5} = 0$	M1		Equating c's $\frac{dy}{dx}$ to zero.
		$\Rightarrow x^2 x^{0.5} = 8, \Rightarrow x^{\frac{5}{2}} = 8 \Rightarrow x = 8^{\frac{2}{5}}$	Al		A correct eqn in the form $x^n = c$ or $x = c^{\frac{1}{n}}$ correctly obtained.
		$\Rightarrow x = (2^3)^{\frac{2}{5}} \Rightarrow x = 2^{\frac{6}{5}}$	A1	3	CSO $x = 2^{\frac{6}{5}}$. All working must be correct and in an exact form. If ' $x=0$ ' also appears then A0 CSO
_				12	

5.	(i)	$\frac{dy}{dx} = 6x + 6x^{-2}$	M1 A1		Attempt to differentiate (one non-zero term correct) Completely correct	NB - x = -1 (and therefore possibly $y = 7$) can be found from equating the incorrect differential
		$6x + \frac{6}{x^2} = 0$	М1		Sets their $\frac{dy}{dx} = 0$	$\frac{dy}{dx}$ = 6x + 6 to 0. This could score M1A0 M1A0A1 f
		x = -1	Al		Correct value for x - www	
	22000	y = 7	Al ft	5	Correct value of y for their value of x	If more than one value of x found, allow A1 ft for one correct value of y
	(ii)	$\frac{d^2y}{dx^2} = 6 - 12x^{-3}$	М		Correct method e.g. substitutes their x from (i) into their $\frac{d^2y}{x^2}$ (must involve x) and considers sign.	Allow comparing signs of their $\frac{dy}{dx}$ either side of their
		When $x = -1$, $\frac{d^2y}{dx^2} > 0$ so minimum pt	Al ft	2	ft from their $\frac{dy}{dx}$ differentiated correctly and correct	"-1", comparing values of y to their "7" SC $\frac{d^2y}{dx^2}$ = a constant correctly obtained from their
		LL.		7	ax substitution of their value of x and consistent final conclusion NB If second derivate evaluated, it must be correct (18 for $x = -1$).	$\frac{dy}{dx}$ and correct conclusion (ft) B1
					If more than one value of x used, max M1 A0	

27.	(i)	$\frac{dy}{dx} = 4x^3 + 32$ $4x^3 + 32 = 0$ $x = -2$ $y = -48$	M1 A1 M1 A1 A1 FT	Attempt to differentiate (one term correct) Completely correct Sets their $\frac{dy}{dx} = 0$ (can be implied) Correct value for x (not ± 2) www Correct value of y for their single non-zero value of x	"+ C" is A0 e.g. (2, 80), (4, 384), (-4, 128), (8, 4352), (-8, 3840)
	(ii)	$\frac{d^2y}{dx^2} = 12x^2$ When $x = -2$, $\frac{d^2y}{dx^2} > 0$ so minimum pt	M1 A1 [2]	Correct method for determining nature of a stationary point – see right hand column Fully correct for $x = -2$ only	e.g. evaluating second derivate at $x = \text{``-2''}$ and stating a conclusion Evaluating $\frac{dy}{dx}$ either side of $x = \text{``-2''}$ Evaluating y either side of $x = \text{``-2''}$
	(iii)	x>-2	B1 FT [1]	ft from single x value in (i) consistent with (ii)	Do not accept $x \ge -2$

28.	(a)	$\left\{ \frac{\mathrm{d}y}{\mathrm{d}x} = \right\} 2x - 16x^{-\frac{1}{2}}$	M1 A1
		$2x - 16x^{-\frac{1}{2}} = 0 \implies x^{\frac{3}{2}} = , x^{-\frac{3}{2}} = , \text{or } 2x - 16x^{-\frac{1}{2}} \text{ then squared then obtain } x^3 = $ [or $2x - 16x^{-\frac{1}{2}} = 0 \implies x = 4 \text{ (no wrong work seen)}$]	M1
		$(x^{\frac{1}{2}} = 8 \Rightarrow) x = 4$	A1
		$x = 4$, $y = 4^2 - 32\sqrt{4} + 20 = -28$ (ignore $y = 100$ as second answer)	M1 A1 (6)
	(b)	$\left\{\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \right\} 2 + 8x^{-\frac{3}{2}}$	M1 A1
		$(\frac{d^2y}{dx^2} > 0 \Rightarrow)y$ is a minimum (there should be no wrong reasoning)	A1
			(3) [9]

29.	(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -3 + \frac{12}{x^4}or - 3 + 12x^{-4}$	M1: $x^n \to x^{n-1}$ $(x^1 \to x^0 \text{ or } x^{-3} \to x^4 \text{ or } 6 \to 0)$ A1: Correct derivative	M1 A1	
		$\frac{dy}{dx} = 0 \Rightarrow -3 + \frac{12}{x^4} = 0 \Rightarrow x = \dots \text{ or }$ $\frac{dy}{dx} = -3 + \frac{12}{\sqrt{2}^4}$	y' = 0 and attempt to solve for $xMay be implied by \frac{dy}{dx} = -3 + \frac{12}{x^4} = 0 \Rightarrow \frac{12}{x^4} = 3 \Rightarrow x = \dots \text{ or}Substitutes x = \sqrt{2} into their y'$	M1	
		So $x^4 = 4$ and $x = \sqrt{2}$ or $\frac{dy}{dx} = -3 + \frac{12}{\left(\sqrt{2}\right)^4} \text{ or } -3 + 12\left(\sqrt{2}\right)^{-4} = 0$	Correct completion to answer with no errors by solving their $y' = 0$ or substituting $x = \sqrt{2}$ into their y'	A1	
					(4)
	(b) $x = -\sqrt{2}$ (c) $\frac{d^2 y}{dx^2} = \frac{-48}{x^5}$ or $-48x^{-5}$		Awrt -1.41	B1	
			Follow through their first derivative from part (a)	B1ft	(1)
	(d)	An appreciation that either $y'' > 0 \Rightarrow$ a minimum or $y'' < 0 \Rightarrow$ a maximum		B1	(1)
		Maximum at P as $y'' < 0$	Cso	B1	
		correct and there must be reference to P	k. y'' need not be evaluated but must be or to $\sqrt{2}$ and negative or < 0 and maximum. ory statements (NB allow y'' = awrt-8 or -9)		
		Minimum at Q as $y'' > 0$	Cso	B1	
			k. y'' need not be evaluated but must be d there must be reference to P or to $-\sqrt{2}$ must be no incorrect or contradictory		
					(3)
					[9]

30.	1(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 18 + 6x - 12x^2$	M1 A1 A1	3	one of these terms correct another term correct all correct (no + c etc) (penalise + c once only in question)
	(b)	$18 + 6x - 12x^2 = 0$	Ml		putting their $\frac{dy}{dx} = 0$, PI by attempt to solve or factorise
		6 $(3-2x)(x+1)$ (= 0) $x=-1, x=\frac{3}{2}$ OE	ml		attempt at factors of their quadratic or use of quadratic equation formula
		$x = -1, \ x = \frac{3}{2}$ OE	Al	3	must see both values unless $x = -1$ is verified separately
					If M1 not scored, award SC B1 for
					verifying that $x = -1$ leads to $\frac{dy}{dx} = 0$ and
					a further SC B2 for finding $x = \frac{3}{2}$ as other
					value
	(c)(i)	$\frac{d^2y}{dx^2} = 6 - 24x$ When $x = -1$, $\frac{d^2y}{dx^2} = 6 - (24 \times -1)$	В1√		FT their $\frac{dy}{dx}$ but $\frac{d^2y}{dx^2}$ must be correct if 3
		d^2v			marks earned in part (a)
		When $x = -1$, $\frac{d^2y}{dx^2} = 6 - (24 \times -1)$	M1		Sub $x = -1$ into 'their' $\frac{d^2y}{dx^2}$
		$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 30$	Alcso	3	
	(ii)	Minimum point	E1√	1	must have a value in (c)(i)
		•			FT "maximum" if their value of $\frac{d^2y}{dx^2} < 0$
		Total		10	dt .

24	(i)	1	M1	Attompt to	differentiate	at land two non	
31.	(1)	$\frac{dy}{dx} = 6x^2 - 2ax + 8$	IVII	Attempt to differentiate, at least two non- zero terms correct			
			A1	Fully correct	et		
		When $x = 4$, $\frac{dy}{dx} = 104 - 8a$	M1	Substitutes	x = 4 into the	$\operatorname{ir} \frac{\mathrm{d}y}{\mathrm{d}x}$	These Ms may be awarded in either order
		$\frac{dy}{dx} = 0$ gives $a = 13$	M1	Sets their $\frac{dy}{dx}$ to 0. Must be seen			
		$\frac{1}{dx}$	Al	dx dx Mast be seen			
	(11)	,2	[5]	Compat mat	thad to find n	atura of atationami	Alternate valid methods include:
	(ii)	$\frac{d^2y}{dx^2} = 12x - 26$	M1				Evaluating gradient at either side
				desirection (at least one town comment from			of $4(x > \frac{1}{3})$ e.g. at 3, -16 at 5, 28
				sign	cian		2) Evaluating $y = -46$ at 4 and either
							side of 4 ($x > \frac{1}{3}$) e.g. (3, -37), (5, -
							2
		d^2y	Al	www			33) If using alternatives, working must be
		When $x = 4$, $\frac{d^2y}{dx^2} > 0$ so minimum	[2]	111111			fully correct to obtain the A mark
	(iii)	$6x^{2} - 26x + 8 = 0$ $(3x - 1)(x - 4) = 0$ $x = \frac{1}{3}$	M1		erivative to ze		
		(3x-1)(x-4)=0	M1 A1	oe Correct met	thod to solve	quadratic (appx 1)	Could be $(6x-2)(x-4) = 0$ or $(3x-1)(2x-8) = 0$
		$x = \frac{1}{3}$	[3]				3,(21, 3),(21, 3)
32.	2(a)	$\left(dy \right) 4t^3$		M1		one of these to	erms correct
	2(a)	$\left(\frac{dt}{dt}\right) = \frac{1}{8} - 2t$		A1	2	all correct (no	+c etc)
	(b)(i)	$t-1 \rightarrow \frac{dy}{dy} - \frac{4}{4} - 2$		M1		Correctly sub	$t = 1$ into their $\frac{dy}{dt}$
	(D)(I)	$\left(\frac{\mathrm{d}y}{\mathrm{d}t} = \right) \frac{4t^3}{8} - 2t$ $t = 1 \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}t} = \frac{4}{8} - 2$		IVII			
		$=-1\frac{1}{2}$		Alcso	2	must have $\frac{dy}{dy}$	correct (watch for t^3 etc)
						dt	
		ă.					dy
	(ii)	$\frac{\mathrm{d}y}{\mathrm{d}t} < 0$				must have use	$\frac{dy}{dt}$ in part (b)(i)
	500 500	di					
		\Rightarrow (height is) decreasing (when t	= 1)	E1√	1	must state that	$t \frac{dy}{dt} < 0$ or "-1.5 < 0"
		- (neight is) deci easing (when t	1)	EIV	1	or the equival	CII
							AND A STATE OF THE
						FT their value	e of $\frac{dy}{dt}$ with appropriate
						explanation ar	
		(d^2v) 4				Correctly diff	erentiating their $\frac{dy}{dx}$
	(c)(i)	$\left \frac{dy}{dt^2}\right = \left \frac{4}{8} \times 3t^2 - 2\right $		M1		524	d <i>t</i>
		$\left(\frac{d^2y}{dt^2}\right) = \frac{4}{8} \times 3t^2 - 2$ $\left(t = 2, \frac{d^2y}{dt^2}\right) = 4$				even if wrong	ly simplified
		$t=2$ $\frac{d^2y}{d^2y}=$ 4		Alcso	2	Both derivativ	es correct and simplified to
		dt^2		Aicso	-	4	
		2-00					

E1√

Total

⇒ minimum

part (c) (i)

FT their numerical value of $\frac{d^2y}{dt^2}$ from

(ii)

33. ($\frac{dy}{dx} = -3x^2 - 6x + 4 - k$ When $x = -3$, $\frac{dy}{dx} = 0$	A1 M1	Can be unsimplified	722 St. 82
		$\frac{dy}{dx} = -3x^2 - 6x + 4 - k$	M1		
		, - 5x 0x 1 7 K	7,175	Attempt to differentiate their expansion	If using product rule:
		dx	A1	(M0 if signs have changed throughout)	Clear attempt at correct rule M1*
		When we 2 dy 0	M1*	Sata dy 0	Differentiates both parts correctly A1
		when $x = -3$, $\frac{d}{dx} = 0$		Sets $\frac{dy}{dx} = 0$	Expand brackets of both parts *DM1
		6553	DM1*	Substitutes $x = -3$ into their $\frac{dy}{dx} = 0$	
		-27 + 18 + 4 - k = 0		dx	Then as main scheme
		k = -5	A1	www	Their as main scheme
		K = -3	[7]	****	
6	ii)	4 ²	1/1		Alternate valid methods include:
($\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = -6x - 6$		Evaluates second derivative at $x = -3$ or other	Evaluating gradient at either side
		dx ⁻	M1	fully correct method	of -3
					2) Evaluating y at either side of -3
				N	3) Finding other turning point and
		When $x = -3$, $\frac{d^2y}{dx^2}$ is positive so min point	A1	No incorrect working seen in this part i.e. if	stating "negative cubic so min before
		$\frac{dx^2}{dx^2}$ is positive so thin point	Al	second derivate is evaluated, it must be 12.	max"
			[2]	(Ignore errors in k value)	885033
6	iii)	$-3x^2 - 6x + 9 = 9$	[2] M1	Sets their gradient function from (i) (or from a	Allow first M even if k not found but
(,	$-3x^{2} - 6x + 9 = 9$	IVII	restart) to 9	look out for correct answer from wrong
				restart) to y	working.
		3x(x+2)=0	A1	Correct x-values	SEE NEXT PAGE FOR
		x = 0 or x = -2			ALTERNATIVE METHODS
		When $x = 0$, $y = -9$ for line	M1	One of their x-values substituted into both	Note: Putting a value into $x^3 + 3x^2 - 4 =$
		y = -5 for curve		curve and line/substituted into one and	0 (where the line and curve meet) is
				verified to be on the other	equivalent
		When $x = -2$, $y = -27$ for line	M1	Conclusion that $x = -2$ is the correct value or	
		y = -27 for curve		Second x-value substituted into both curve	If curve equated to line before
				and line/verified as above	differentiating:
		x = -2, y = -27	A1	x = -2, $y = -27$ www (Check k correct)	M0 A0, can get M1M1 but A0 ww
			[5]		Maximum mark 2/5

34.	(i)	$x^{3} - 3x^{2} + 5x + 2x^{2} - 6x + 10$ $= x^{3} - x^{2} - x + 10$ $\frac{dy}{dx} = 3x^{2} - 2x - 1$ $(3x + 1)(x - 1) = 0$ $x = -\frac{1}{3} \text{ or } x = 1$ $\frac{d^{2}y}{dx^{2}} = 6x - 2, x = 1 \text{ gives +ve (4)}$ Min point at $x = 1$ $y = 9 \text{ found}$	M1 M1* M1 A1 M1dep A1	Attempt to multiply out brackets Attempt to differentiate their cubic Sets their $\frac{dy}{dx} = 0$ Correct method to solve quadratic Correct x values of turning points found www Valid method to establish which is min point with a conclusion Correct conclusion for $x = 1$ found from correct factorisation (even if other root incorrect) www for $(1, 9)$ given as minimum point (ignore other point here)	Alternative for product rule Attempt to use product rule M1 Expand brackets of both parts M1 Then as main scheme Any extra values for turning points loses all three A marks (eg by sketching positive cubic, second diff method for either of their x values, y co-ords etc.) If constant incorrect in initial expansion, max 5/8
	(ii)	$(-3)^2 - 4 \times 1 \times 5 = -11$	M1 A1 [2]	Uses $b^2 - 4ac$	$\sqrt{b^2-4ac}$ is M0
	(iii)		B2	Fully correct argument - no extra incorrect statements e.g. 1) Justifying the quadratic factor having no roots so only intersection with x -axis is at $x = -2$ and stating it's a positive cubic 2) Sketch of positive cubic with one root at $(-2, 0)$ and a min point at $(1, 9)$ (f/t positive $y(1)$ from (i))	Award B1 for either of: 1) Justifying the quadratic factor having no roots so only intersection with x-axis is at $x = -2$ 2) Sketch of positive cubic with one root at $(-2, 0)$ and a min point with y coordinate positive or 0

35.	(a)(i)	$(SA =) \pi r^2 + 2\pi rh$	B1		correct surface area
		$(SA =) \pi r^{2} + 2\pi r h$ $\pi r^{2} + 2\pi r h = 48\pi$ $\Rightarrow 2rh = 48 - r^{2} \Rightarrow h = \dots$ $h = \frac{48 - r^{2}}{2r}$	M1	3	equating "their" SA to 48π and attempt at $h = \frac{24}{r} - \frac{r}{2}$ OE
	(ii)	$V = \pi r^2 h = \dots$ $= \pi f(r)$	М1		correct volume expression & elimination of h using "their" (a)(i)
		$V = \pi r^2 \left(\frac{48 - r^2}{2r} \right) = 24\pi r - \frac{\pi}{2} r^3$	A1	2	AG (be convinced)
	(b)(i)	$\left(\frac{\mathrm{d}V}{\mathrm{d}r}\right) 24\pi - \frac{3}{2}\pi r^2$ $24\pi - \frac{3}{2}\pi r^2 = 0 \Rightarrow r^2 = \frac{48\pi}{3\pi}$	M1 A1	2	one term correct all correct, must simplify r^0
	(ii)	$24\pi - \frac{3}{2}\pi r^2 = 0 \Rightarrow r^2 = \frac{48\pi}{3\pi}$	M1		"their" $\frac{dV}{dr} = 0$ and attempt at $r^n = \dots$
		r=4	A1		from correct $\frac{dV}{dr}$
		$\frac{\mathrm{d}^2 V}{\mathrm{d}r^2} = -\frac{6\pi r}{2}$	B 1√		FT "their" $\frac{dV}{dr}$
		$\frac{\mathrm{d}^2 V}{\mathrm{d}r^2} < 0 \text{when } r = 4 \Longrightarrow \text{Maximum}$	A1cso	4	explained convincingly, all working and notation correct
		Total		11	

36.	(a)(i)	$3x^2 + 3x^2 + xy + xy + 3xy + 3xy$	M1		correct expression for surface area
	110 100	$6x^2 + 8xy = 32$			$2(3x^2 + xy + 3xy) = 32 \text{ etc}$
		$\Rightarrow 3x^2 + 4xy = 16$	A1	2	AG be convinced
	(ii)	$(V =)3x^2y$ OE	M1		correct volume in terms of x and y
		$=3x\left(\frac{16-3x^2}{4}\right) \text{ or } =3x^2\left(\frac{16-3x^2}{4x}\right)$			OE
		$=12x-\frac{9x^3}{4}$	A1	2	CSO AG be convinced that all working is correct
	(b)	$(dV)_{rr}$ 27 :	M1		one of these terms correct
		$\left(\frac{\mathrm{d}V}{\mathrm{d}x}\right) = 12 - \frac{27}{4}x^2$	A1	2	all correct with 9×3 evaluated (no + c etc)
	(c)(i)	$x = \frac{4}{3} \Rightarrow \frac{\mathrm{d}V}{\mathrm{d}x} = 12 - \frac{27}{4} \times \left(\frac{4}{3}\right)^2$	M1		attempt to sub $x = \frac{4}{3}$ into 'their' $\frac{dV}{dx}$
		$\frac{dV}{dx} = 12 - \frac{27}{4} \times \frac{16}{9} = 12 - 12$			or $12 - \frac{432}{36} = 12 - 12$ or $12 - \frac{48}{4} = 0$ etc
		$\frac{\mathrm{d}V}{\mathrm{d}x} = 0 \implies \text{stationary value}$	Al	2	CSO; shown = 0 plus statement
	(ii)	$\frac{\mathrm{d}^2 V}{\mathrm{d}x^2} = -\frac{27x}{2} \qquad \text{OE}$	B1√		FT for 'their' $\frac{\mathrm{d}V}{\mathrm{d}x} = a + bx^2$
		when $x = \frac{4}{3}$, $\frac{d^2V}{dx^2} < 0 \implies \text{maximum}$	E1√	2	or sub of $x = \frac{4}{3}$ into 'their' $\frac{d^2V}{dx^2}$ \Rightarrow maximum
		$\left(FT "minimum" if their \frac{d^2V}{dx^2} > 0 \right)$			E0 if numerical error seen
		Total		10	

(Parts (b) and (c) should be considered together when marking)

(2)

[12]