
Formulae

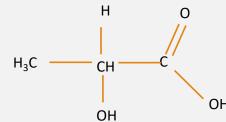
- Structural formula gives the minimum detail on the arrangement of atoms in a molecule, without drawing any bonds
- e.g. CH3CH2CH3 (Propane)
- Molecular formula shows the number and types of atoms of each element in a compound. However, it does not give any information on how the molecule is bonded together.
- e.g. C2H5OH (ethanol)
- Skeletal formula is a simplified formula used to represent organic molecules. Lines represent bonds between atoms, junctions are carbon atoms. Other labels are omitted.
- e.g. (Propane)
- Displayed formula shows the relative positioning of atoms and the bonds between them. All atoms and bonds are shown

• Empirical formula the simplest whole–number ratio of each element present in a compound.

e.g. CH₂O. (empirical formula for glucose)

Name a compound

To name a compound:

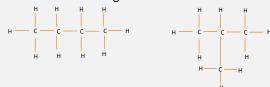

- The stem is the main part of the name derived from the longest carbon chain.
- · The suffix after the stem, comes from the highest priority functional group
- The prefix before the stem comes from functional groups attached to the main carbon chain (2nd or 3rd priority)
- Numbers and hyphens indicating the position of functional groups on the carbon chain
- Order of priority highest first: Carboxylic acids >aldehydes>ketones>alcohols>alkenes>halogenoalkanes

Compound	Prefix	Suffix
Alkanes	_	–ane
Alkenes	-	–ene
Alcohols	Hydroxy–	–ol
Carboxylic Acids	-	–oic acid
Haloalkanes	Fluoro– Chloro– Bromo– Iodo–	_
Aldehydes	-	–al
Ketones	-	–one

Carbon Atoms in alkyl group	Prefix
1	Methyl
2	Ethyl
3	Propyl
4	Butyl
5	Pentyl
6	Hexyl

e.g. 2-Hyrdoxypropanoic acid

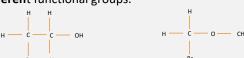
INTRODUCTION TO ORGANIC CHEMISTRY



Nomenclature

- Hydrocarbons can be:
 - **Aliphatic** carbon atoms form straight or branched chains
 - **Alicyclic** carbon atoms form a ring
 - **Aromatic** carbon atoms form a ring and have a delocalised electron system
- Homologous series are compounds with the same functional group and similar chemical and physical properties. They differ by the number of repeating units they contain
- A functional group is the group of atoms responsible for the characteristic reactions of a compound.

Isomerism


- Isomers are compounds with the same molecular formula but a different arrangement of atoms
- Structural isomers are compounds with the same molecular formula but a different structural formula
- Chain isomers Same molecular formula but a different arrangement of the carbon chain. Chains can be straight or branched.

• Position isomers — These are molecules with the same functional group attached to a different position on the carbon chain

Functional group isomers — These are molecules with the same molecular formula but different functional groups.

- **Stereoisomers** are organic compounds with the same molecular and structural formulae but a different arrangement of atoms in space
- E/Z isomerism is a type of stereoisomerism that can arise in alkenes due to the restricted rotation around the C=C bond.
 - •If a carbon atom has two of the same substituent attached, it will not show E/Z isomerism •Substituents can be assigned priorities based on atomic mass (Cahn-Ingold-Prelog rules to name E/Z isomers). Greater the atomic mass, the higher the priority
 - •Highest priority groups are on **different sides** of double bond, the isomer is an **E-isomer**.
 - •Highest priority groups are on the same side of double bond, the isomer is a **Z-isomer**

E-1,2-dichloroethane

Z-1,2-dichloroethane

