Year 12 Lecture Series Topic 8 - Exponentials & Logarithms

Inspired Learning
Mr A S Gill

- Log laws
- Solving logarithmic equations
- Natural logs and 'e'
- Logarithmic graphs

Prerequisites:

Topic 1 - Algebra
Topic 2 - Coordinate Geometry

$$a^x = b \leftrightarrow \log_a b = x$$

Logarithms

Write these in log *form*:

$$a) 5^3 = 125$$

$$b) 10^4 = 10000$$

c)
$$a^3 = 8$$

$$d) 64 = 8^2$$

e)
$$x^n = 10$$

Evaluate the following (no calculator)

$$a)\log_7 49$$

$$b) \log_2 32$$

$$c)\log_4 1$$

$$d)\log_2\left(\frac{1}{2}\right)$$

$$e)\log_{x}x^{3}$$

Logarithmic laws

Logarithmic laws

$$\log ab =$$

$$\log \frac{a}{b} =$$

$$\log a^b =$$

Logarithmic laws

Express these as a single logarithm:

- $a) \log 3 + \log 7$
- b) 3 log 4
- $c) 2 \log 11 \log 4$
- $d) 3 \log 5 + 4 \log 6 3 \log 10$

Express these in terms of separate logs (a, b, and c):

- $a) \log a^3 b$
- b) $\log bc^2$
- $c)\log\frac{ab^2}{c^3}$
- $d)\log\frac{a^4b^3}{\sqrt{c}}$

Given that a > 0, state the values of

- a $\log_a 1$,
- b $\log_a(a^3)^6$,
- c $\log_a \sqrt{a}$.

[MEI, GCE Mathematics, C2, Jan 2012]

Given that $\log_3 x = a$, find in terms of a,

- a $\log_3(9x)$
- b $\log_3\left(\frac{x^5}{81}\right)$

giving each answer in its simplest form.

c Solve, for x,

$$\log_3(9x) + \log_3\left(\frac{x^5}{81}\right) = 3$$

giving your answer to 4 significant figures.

[EDEXCEL, GCE Mathematics, C2 1R, June 2013]

Solving Equations

Previously:

$$2^{x} = 32$$

Now:

$$2^{x} = 37$$

$$3^{2x+1} = 81$$

$$3^{2x+1} = 850$$

$$2^{x+1} = 3^{3x-2}$$

Use logarithms to solve the equation $3^{x+1} = 5^{2x}$. Give your answer correct to 3 decimal places. [MEI, GCE Mathematics, C2, June 2014]

Solving Equations

$$3^{2x} - 8(3^x) = 0$$

- a Find, to 3 significant figures, the value of x for which $5^x = 7$.
- b Solve the equation $5^{2x} 12(5^x) + 35 = 0$.

[EDEXCEL, GCE Mathematics, C2, June 2008]

Natural logs and 'e'

Exponential functions:

y x

Graph transformations (see topic 1)

Solve the equations below:

a)
$$e^x = 7$$

$$b)\ln(3x-1)=4$$

$$c) e^{2x} + 2e^x - 15 = 0$$

Exponential Growth & Decay:

A substance is decaying exponentially. Its mass (m, grams)

```
after t years is given by:
```

- $m = 200e^{-0.04t}.$
- a) Find the value of m when t = 50
- b) Find the value of t when m = 50.
- c) What is the initial value of m?

A population of flies *P* is given by the formula $P = A e^{-kt}$, where *t* is the time in days measured from a time when P = 2000.

- a Write down the value of A.
- b Given that P = 500 when t = 5, show that $k = \frac{1}{5} \ln 4$.
- c Find the value of P when t = 8 days.

Solve the inequality $0.3^x < 0.02$.

The number of members of a social networking site is modelled by $m = 150e^{2t}$, where m is the number of members and t is time in weeks after the launch of the site.

- b What is the significance of the integer 150 in the model?
- c Find the week in which the model predicts that the number of members first exceeds 60 000.

[OCR, GCE Mathematics, Specimen Pure and Mechanics, 2017]

Logarithmic Graphs

```
y = ab^{x}
\therefore \log y = \log(ab^{x})
\log y = \log a + x \log b
y = c + mx
```

The graph below shows $\log_{10} y$ against x. Find an equation relating $\log_{10} y$ and x, Use the graph below, which shows the relationship between $\log_{10} x$ and $\log_{10} y$, and hence find an equation relating x and y.

It is believed that the variables x and y are connected by an equation in the form $y = kb^x$.

A plot of $\log_{10} y$ against x gives the coordinates (1,6) and (3,2).

Find the values of k and b.

The graph shows the relationship between $\log_{10} x$ and $\log_{10} y$.

Find y in terms of x.

[MEI, GCE Mathematics, C2, June 2012]

The temperature of an object left to cool in a refrigerator set at 0°C can be modelled by an equation of the form $T = kb^{-x}$, where x is the time in hours, and T is the temperature in degrees celsius.

a Use the data given below to form an equation relating *T* and *x*, giving the values of any constants correct to two significant figures.

Time in hours, <i>x</i>	1	2	3	4	5
Temp in °C, T	68	29	14	6.4	2.9

b Use your equation to estimate the initial temperature of the object.

Summary:

- Logarithms are the inverse of exponents.
- You can use them to solve equations.
- There are certain laws that apply to logarithms.
- 'e' is a constant and $\ln is \log_e$.
- We can model logarithmic graphs using linear plots.

See you next week!

LIKE

SHARE

