Surds

1) Simplify:

$$a\sqrt{121}$$
 $b\sqrt{\frac{1}{9}}$ $c\sqrt{\frac{16}{49}}$ $d\sqrt{0.01}$ $e\sqrt[3]{8}$

2) Simplify and rationalise the denominator where appropriate:

$$a\sqrt{3} \times \sqrt{5}$$
 $b\sqrt{3} \times \sqrt{7}$ $c\frac{\sqrt{p}}{\sqrt{q}}$ $d\frac{1}{2\sqrt{q}}$ $e\frac{3\sqrt{a}}{\sqrt{2b}}$

3) Express the questions where all terms are under a root, in terms of the simplest possible surds. Express the questions where the terms are mixed with surds and integers, as square roots of integers.

$$a\sqrt{8}$$
 $b\sqrt{12}$ $c\sqrt{3}\sqrt{2}$ $d\sqrt{50}$ $e\sqrt{4}\sqrt{5}$ $f\sqrt{3}\sqrt{8}$ $g\sqrt{1210}$ $h\sqrt{6}\sqrt{6}$ $i\sqrt{72}$ $j\sqrt{14}\sqrt{2}$

4) Simplify

$$a\sqrt{18} + \sqrt{32}$$
 $b\sqrt{48} - \sqrt{27}$ $c2\sqrt{8} + \sqrt{72}$ $d\sqrt{360} - 2\sqrt{40}$ $e2\sqrt{5} - \sqrt{45} + 3\sqrt{20}$ $f\sqrt{24} + \sqrt{150} - 2\sqrt{96}$

5) Express in the form $a + b\sqrt{c}$, where a, b, and c are rational numbers

a
$$3(2+\sqrt{3})$$
 b $4-\sqrt{3}-2(1-\sqrt{3})$ **c** $(\sqrt{5}+2)^2$ **d** $(1+\sqrt{2})(3-2\sqrt{2})$ **e** $\sqrt{\frac{1}{2}}+\sqrt{\frac{1}{4}}+\sqrt{\frac{1}{8}}$

$$f(3\sqrt{3}+1)(2-5\sqrt{3})$$
 $g(5\sqrt{5}-4)^2$ $h(3-\sqrt{8})(4+\sqrt{2})$

6) Express each of the following as simply as possible, with a rational denominator.

$$a\frac{1}{\sqrt{5}}$$
 $b\frac{2}{\sqrt{3}}$ $c\frac{14}{\sqrt{7}}$ $d\frac{3\sqrt{2}}{\sqrt{3}}$ $e\frac{1}{2\sqrt{2}}$ $f\frac{-7}{2\sqrt{7}}$ $g\frac{9}{4\sqrt{6}}$ $h\frac{1}{\sqrt{2}+1}$ $i\frac{1}{3-\sqrt{5}}$ $j\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$

$$k \frac{\sqrt{5} + 1}{\sqrt{5} - \sqrt{3}}$$
 $l \frac{2\sqrt{2} - \sqrt{3}}{\sqrt{3} + \sqrt{2}}$ $m \frac{\sqrt{6} + \sqrt{3}}{\sqrt{6} - \sqrt{3}}$ $n \frac{\sqrt{10} + 2\sqrt{5}}{\sqrt{10} + \sqrt{5}}$