Year 12 Lecture Series Topic 1 - Algebra & Functions

Inspired Learning
Mr A S Gill

$a^b \times a^c =$

$$a^b \div a^c =$$

$$(a^b)^c =$$

$$a^{0} =$$

$$a^{\frac{1}{b}}=$$

Indices

$$a^{-b} =$$

$$a^{\frac{c}{b}}=$$

$$a^{-\frac{c}{b}}$$
=

$$a^b \times f^b =$$

Indices

Evaluate the following:

- 1) $2^2 \times 2^2$
- 2) $27^{\frac{1}{3}}$
- 3) $(\sqrt{9})^3$

Evaluate the following:

- 1) $2^2 \times 2^2$
- 3) $(\sqrt{9})^3$

Indices

Simplify the following:

- $x^3 \times x^4$
- 2) $\frac{a^{12}}{a^5}$ 3) $(s^3)^3 \times (s^2)^9$

Indices

Evaluate the following:

1)
$$2^2 \times 2^2$$

2)
$$27^{\frac{1}{3}}$$

3)
$$(\sqrt{9})^3$$

Simplify the following:

1)
$$x^3 \times x^4$$

2)
$$\frac{a^{12}}{a^5}$$

3)
$$(s^3)^3 \times (s^2)^9$$

4)
$$(k^{\frac{1}{2}})^6$$

Simplify the following:

1)
$$(a^3)^3$$

3)
$$2x^3 \times 5xy$$

$$5) \ 12x^4y^2z \div 4x^3y^2$$

7)
$$(8a^6b^3)^{\frac{1}{3}}$$

2)
$$c^7 \div c$$

4)
$$10t^4u^2 \div 2t^2$$

6)
$$(36m^4n^2)^{\frac{1}{2}}$$

8)
$$(16x^8y^{12})^{\frac{1}{4}} \times (3xy^3)$$

Indices

Solve the equation $2^n = 16$

Indices

Solve the equation $2^n = 16$

Solve the equation
$$3^{2x-1} = 27$$

Want
$$a^x = a^y$$

Solve the equation
$$x^{\frac{2}{3}} = \frac{1}{4}$$

Solve the equation
$$x^{\frac{2}{3}} = \frac{1}{4}$$

Find the value of *n* (as a fraction or whole number) in the following equations:

a
$$27^{n-1} = 3^6$$

b
$$8^{2n+1} = 32^{n+1}$$

Solve the following equations, showing your working clearly

$$d 2x^3 - 54 = 0$$

$$65x^{-2} - 80 = 0$$

d
$$2x^3 - 54 = 0$$
 e $5x^{-2} - 80 = 0$ f $2x^{\frac{2}{3}} - 1 = 17$

<u>Surds</u>

• *Irrational numbers*

Surds

• *Irrational numbers*

•
$$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$$
 and $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

<u>Surds</u>

Example 1

a
$$(5 - \sqrt{3})(7 + \sqrt{3})$$

b
$$(\sqrt{2} + 1)(\sqrt{2} + 5)$$

Example 1

a
$$(5 - \sqrt{3})(7 + \sqrt{3})$$

b
$$(\sqrt{2} + 1)(\sqrt{2} + 5)$$

Surds

Simplify the following:

$$\frac{\sqrt{27}}{\sqrt{3}}$$

$$\sqrt{3} + \sqrt{12}$$

Rationalising:

$$\frac{10}{\sqrt{5}}$$

$$\frac{15}{\sqrt{3}}$$

$$\frac{16}{\sqrt{8}}$$

$$\frac{50\sqrt{2}}{\sqrt{10}}$$

Rationalising:

$$\frac{2}{3 + \sqrt{2}}$$

$$\frac{14 + 2\sqrt{5}}{3 - \sqrt{5}}$$

Rationalising:

$$\frac{2}{3 + \sqrt{2}}$$

$$\frac{14 + 2\sqrt{5}}{3 - \sqrt{5}}$$

- 5 a Express $\frac{12}{3+\sqrt{5}}$ in the form $a-b\sqrt{5}$, where a and b are positive integers.
 - b Express $\sqrt{18} \sqrt{2}$ in simplified surd form.

[OCR, GCE Mathematics, C1, June 2010]

Polynomial Expressions

Quadratics:

- Factorising
- Formula
- CTS
- Discriminant

Polynomial Expressions

Quadratics:

- Factorising
- Formula
- CTS
- Discriminant

By completing the square, find the coordinates of the turning point of the curve $y = x^2 + 6x + 11$.

For the quadratic function $f(x) = -x^2 - 2x + 7$,

- a write f(x) in completed square form.
- b hence find the line of symmetry and the coordinates of the vertex.
- c sketch the curve $y = 7 2x x^2$

Polynomial Expressions

Quadratics:

- Factorising
- Formula
- CTS
- Discriminant

Calculate the discriminant of $f(x) = 2x^2 + 11x + 5$ and hence state how many solutions there are to the equation f(x) = 0.

Find an inequality involving p such that the equation $px^2 + 2x + 1 = 0$ has no solutions.

Inequalities

Draw it out!!!

Inequalities

Solve
$$x^2 - 3x - 40 < 0$$
.

Solve
$$x^2 - 10x + 21 \ge 0$$
.

The equation $(p-1)x^2 + 4x + (p-5) = 0$, where p is a constant, has no real roots.

- a Show that *p* satisfies $p^2 6p + 1 > 0$.
- **b** Hence find the set of possible values of *p*.

[EDEXCEL, GCE Mathematics, C1, June 2015]

The equation $kx^2 + 4x + (5 - k) = 0$, where k is a constant, has 2 different real solutions for x.

(a) Show that k satisfies

$$k^2 - 5k + 4 > 0$$
.

(b) Hence find the set of possible values of k.

Simultaneous Equations

Solve
$$5x + 7y = 19$$

and
$$3x + 2y = 7$$

Simultaneous Equations

Solve
$$3x + y = 10$$

and $x^2 + 2xy + 2y^2 = 17$

Solve the simultaneous equations
$$3x + y = 7$$

 $xy + x^2 = 6$

Simultaneous Equations

a Solve the simultaneous equations

$$y = 2x^2 - 3x - 5$$
, $10x + 2y + 11 = 0$.

b What can you deduce from the answer to part a about the curve $y = 2x^2 - 3x - 5$ and the line 10x + 2y + 11 = 0?

[OCR, GCE Mathematics, C1, Jan 2013]

Sketching Graphs - Common Curves

Sketching Graphs

Sketch the graph of $y = x^2 - x - 2$.

Sketch the graph of y = (x + 3)(x + 1)(x - 5).

(a) Factorise completely $x^3 - 6x^2 + 9x$

(3)

(b) Sketch the curve with equation

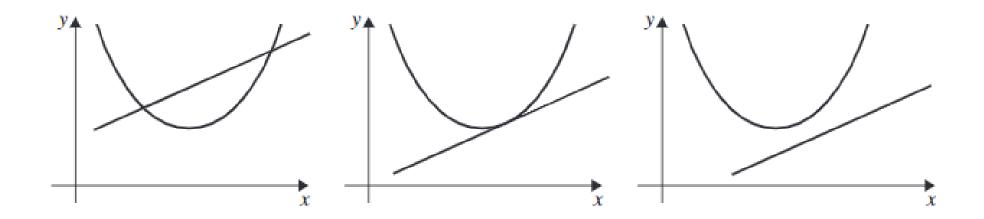
$$y = x^3 - 6x^2 + 9x$$

showing the coordinates of the points at which the curve meets the x-axis.

(4)

Sketching Graphs & Simultaneous Equations

Sketching Graphs & Simultaneous Equations



Sketching Graphs & Simultaneous Equations

Show that the line y = x - 4 is a tangent to the circle $x^2 + y^2 = 8$.

Sketching Graphs & Simultaneous Equations

Find the values of k such that the line y = kx is a tangent to the curve $y = x^2 + 100$.

Graph Transformations

$$y = f(x) \pm a$$

$$y = f(x \pm a)$$

$$y = -f(x)$$

$$y = f(-x)$$

$$y = af(x)$$

$$y = f(ax)$$

a y = f(x + 3),

b y = f(3x)

Graph Transformations

 $y = f(x) \pm a$

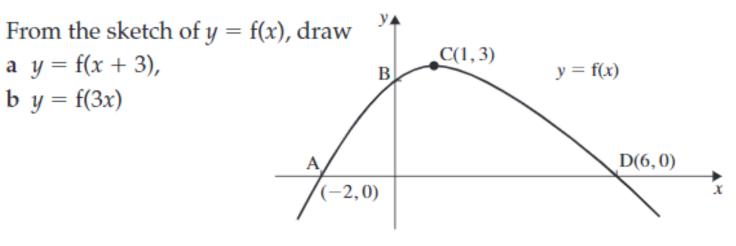
$$y = f(x \pm a)$$

$$y = -f(x)$$

$$y = f(-x)$$

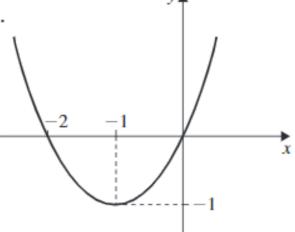
$$y = af(x)$$

$$y = f(ax)$$



This is the sketch graph of y = f(x).

- a Sketch the graph of y = f(x) + 3
- b Sketch the graph of y = f(x + 1)
- c Sketch the graph of y = -f(x).



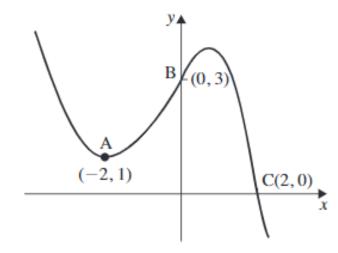
This is the sketch of y = f(x) which passes through A, B, C.

Sketch the following curves, giving the new coordinates of A, B, C in each case.

a
$$y = -f(x)$$

b
$$y = f(x - 2)$$

$$\mathbf{c} \quad y = \mathbf{f}(2x)$$



(a) Factorise completely $x^3 - 6x^2 + 9x$

(3)

(b) Sketch the curve with equation

$$y = x^3 - 6x^2 + 9x$$

showing the coordinates of the points at which the curve meets the x-axis.

(4)

- Using your answer to part (b), or otherwise,
- (c) sketch, on a separate diagram, the curve with equation

$$y = (x-2)^3 - 6(x-2)^2 + 9(x-2)$$

showing the coordinates of the points at which the curve meets the x-axis.

- a) Express $x^2 + 5x + 7$ in the form $(x + p)^2 + q$, where p and q are rational numbers.
- b) Describe the geometrical transformation that maps the graph of $y = x^2$ onto the graph of $y = x^2 + 5x + 7$. [AQA, GCE Mathematics, C1, June 2011]