1. $$(3-2x)^5 = 243, \qquad \dots + 5 \times (3)^4 (-2x) = -810x \qquad \dots$$ $$+ \frac{5 \times 4}{2} (3)^3 (-2x)^2 = \qquad +1080x^2$$ [4] | $81x^4 - 216x^3 + 216x^2 - 96x + 16$ | 4 | | condone eg +($-96x$) or + $-96x$ instead
of $-96x$ | |--------------------------------------|---|--|--| | | | M3 for 4 terms correct
or for all coefficients correct except for sign
errors
or for correct answer seen then further
'simplified'
or for all terms correct eg seen in table but not
combined | any who multiply out instead of usin
binomial coeffts: look at their final
answer and mark as per main scheme
if 3 or more terms are correct,
otherwise M0 | | | | or M2 for 3 terms correct
or for correct expansion seen without correct
evaluation of coefficients [if brackets
missing in elements such as $(3x)^2$ there must
be evidence from calculation that $9x^2$ has
been used]
or M1 for 1 4 6 4 1 row of Pascal's triangle
seen | binomial coefficients such as 4C_2 or ${4 \choose 2}$ are not sufficient – must show understanding of these symbols by a least partial evaluation; | | 3. | $\left(1 + \frac{x}{3}\right)^{6} = 1 + \binom{6}{1} \frac{x}{3} + \binom{6}{2} \left(\frac{x}{3}\right)^{2} + \binom{6}{3} \left(\frac{x}{3}\right)^{3}$ $= (1 +) 2x + \frac{6!}{4!2!} \left(\frac{x}{3}\right)^{2} + \frac{6!}{3!3!} \left(\frac{x}{3}\right)^{3}$ $= (1 + 2x) + \frac{15}{9} x^{2} + \frac{20}{27} x^{3}$ | B1
M1 | | a=2. Condone '2x' Either (1 6) 15 20 seen or $\binom{6}{2}$, $\binom{6}{3}$ written (PI) in terms of factorials (OE) | |----|--|----------|---|--| | | (a=2) $b = \frac{5}{3}, c = \frac{20}{27}$ | A1 | 4 | $b = \frac{5}{3} \text{ (or } 1\frac{2}{3} \text{). Condone } + \frac{5}{3}x^2$ $c = \frac{20}{27} \text{. Condone } + \frac{20}{27}x^3$ Accept equivalent recurring decimals Ignore terms with higher powers of x SC If A0A0 award A1 for either $+15\frac{x^2}{9}$, $+20\frac{x^3}{27}$ seen or $+\frac{15x^2}{9}$, $+\frac{20x^3}{27}$ seen | | | Total | | 8 | 100 | | 4. | (a) | $(1-x)^3 = 1-3x+3x^2-x^3$ | M 1 | | 3 terms correct or $1 (\pm)3 (\pm)3 (\pm)1$ seen | |----|-----|---|------------|----|---| | | | | A1 | 2 | All correct | | | (b) | $(1+y)^4 = 1+4y+6y^2+4y^3+y^4$ | M1
A1 | | 4 terms correct, accept unsimplified
All 5 terms correct and simplified at some
stage | | | | $(1+y)^4 - (1-y)^3 =$ $(4y+3y) + (6y^2 - 3y^2) + (4y^3 + y^3) + y^4$ $= 7y + 3y^2 + 5y^3 + y^4$ (as required with $p=3$ and $q=5$) | A2,1 | 4 | A2 Be convinced as part answer is given (A1 for three terms found correctly or if found correct values for p and q but did not show $7y+y^4$.) | | | (c) | $\int \left[\left(1 + \sqrt{x} \right)^4 - \left(1 - \sqrt{x} \right)^3 \right] dx =$ $\int \left(7\sqrt{x} + 3x + 5x\sqrt{x} + x^2 \right) dx$ $\int \left(7x^{0.5} + 3x + 5x^{1.5} + x^2 \right) dx$ | M1 | | Use of part (b) $y \rightarrow \sqrt{x}$ OE before any integration | | | | $= \frac{7x^{1.5}}{1.5} + \frac{3x^2}{2} + \frac{5x^{2.5}}{2.5} + \frac{x^3}{3} (+c)$ | m1 | | Correct integration of an x^k term where k is non-integer | | | | $= \frac{14}{3}x^{1.5} + \frac{3}{2}x^2 + 2x^{2.5} + \frac{1}{3}x^3 \ (+c)$ | A2,1F | 4 | Coeffs simplified; condone absent (+c)
Ft on c's p and q ie 2 nd term $+\frac{p}{2}x^2$ and | | | | | | | 3^{rd} term is $+\frac{2q}{5}x^{2.5}$. (A1F for three of these four ft terms or for four correct ft terms unsimplified) | | | | Total | | 10 | 37.35.56 | | 5. | 6000 | 4 | M3 for $15 \times 5^2 \times 2^4$; | condone inclusion of x^4 eg $(2x)^4$;
condone omission of brackets in $2x^4$ if 16 used; | |----|------|---|--|---| | | | | or M2 for two of these elements correct
with multiplication or all three elements
correct but without multiplication (e.g.
in list or with addition signs); | allow M3 for correct term seen (often all terms written down) but then wrong term evaluated or all evaluated and correct term not identified; | | | | | or M1 for 15 soi or for 1 6 15 seen in Pascal's triangle; | $15 \times 5^2 \times (2x)^4$ earns M3 even if followed by $15 \times 25 > 2$ calculated; | | | | | SC2 for 20000[x ³] | no MR for wrong power evaluated but SC for fourth term evaluated | | | Answer | Marks | Guidance | | |----------|---|-------|--|---| | <i>.</i> | $(3+2x)^5 = 243 + 810x + 1080x^2 + 720x^3 + 240x^4 + 32x^5$ | M1* | Attempt expansion – products of powers of 3 and 2x | Must attempt at least 5 terms. Each term must be an attempt at a product, including binomial coeffs if used. Allow M1 for no, or incorrect, binomial coeffs. Powers of 3 and $2x$ must be intended to sum to 5 within each term (allow slips if intention correct). Allow M1 even if powers used incorrectly with the $2x$ is $2x^3$ not $(2x)^3$ can get M1. Allow M1 for powers of $^2/_3x$ from expanding $k(1 + ^2/_3x)^5$, any k (allow if powers only applied to x and not $^2/_3$). | | | | Mld* | Attempt to use correct binomial coefficients | At least 5 correct from 1, 5, 10, 10, 5, 1 - allow missing or incorrect (but not if raised to a power). May be implied rather than explicit. Must be numerical eg 5C_1 is not enough. They must be part of a product within each term. The coefficient must be used in an attempt at the relevant term ie 5 x 3 ³ x (2x) ² is M0. Allow M1 for correct coefficients from expanding $k(1 + {}^2/_3x)^5$, any k . | | | | Al | Obtain at least four correct simplified terms | Either linked by '+' or as part of a list. | | | | A1 | Obtain fully correct expansion | With all coefficients simplified. Terms must be linked by '+' and not just commas. | | | | [4] | | SR for reasonable expansion attempt: M2 for attempt involving all 5 brackets resulting in a quintic with at most one term missing A1 for four correct, simplified, terms A1 for fully correct, simplified, expansion | | 7. | (i) | 10 cao | 1 [1] | | | |----|------|------------------------|-------|---|--| | | (ii) | -720 [x ³] | 4 | B3 for $720 [x^3]$ or for $10 \times 9 \times -8 [x^3]$ or M2 for $10 \times 3^2 \times (-2)^3$ oe or ft from (i) or M1 for two of these three elements correct or ft; condone x still included | condone $-720 x$ etc
allow equivalent marks for the x^3 term
as part of a longer expansion
eg M2 for $3^3 \left(10 \times \left(\frac{-2}{3} \right)^3 \right)$ or M1
for $10 \times \left(\frac{-2}{3} \right)^3$ etc | 8. (a) $$(1+ax)^{10} = 1+10ax$$ (Not unsimplified versions) B1 $+\frac{10\times9}{2}(ax)^2 + \frac{10\times9\times8}{6}(ax)^3$ Evidence from one of these terms is sufficient H1 $+45(ax)^2, +120(ax)^3$ or $+45a^2x^2, +120a^3x^3$ A1, A1 (4) (b) $120a^3 = 2\times45a^2$ $a = \frac{3}{4}$ or equiv. $\left(\text{e.g.}\frac{90}{120}, 0.75\right)$ Ignore $a = 0$, if seen M1 A1 (2) | | 243 as a constant term seen. | B1 | | |--|--|----------------|-----| | $\{(3+bx)^5\}$ = $(3)^5 + {}^5C_1(3)^4(b\underline{x}) + {}^5C_2(3)^3(bx)^2 +$ | 405bx | B1 | | | $= 243 + 405bx + 270b^2x^2 + \dots$ | $({}^{5}C_{1} \times \times x)$ or $({}^{5}C_{2} \times \times x^{2})$ | <u>M1</u> | | | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | $270b^2x^2$ or $270(bx)^2$ | A1 | [4] | | (| Establishes an equation from | 55 70.000 | 3 | | $\{2(\text{coeff } x) = \text{coeff } x^2\} \Rightarrow 2(405b) = 270b^2$ | their coefficients. Condone 2 on | M ₁ | | | | the wrong side of the equation. | | | | So, $\left\{b = \frac{810}{270} \Rightarrow\right\} b = 3$ | b = 3 (Ignore $b = 0$, if seen.) | A1 | | | | | | [2] | | | | | 6 | | 10. | | Solution | Marks | Total | Comments | |-----|------|--|-------|-------|--| | |)(i) | $\{(2+y)^3=\}$ 8+12y+6y ² +y ³ | M1 | | At least 3 terms simplified and correct | | | | | A1 | 2 | All correct | | | (ii) | $(2+x^{-2})^3 = 8+12x^{-2}+6(x^{-2})^2+(x^{-2})^3$ | M1 | | A replacement of y by x^{-2} in c's (a)(i) working. PI | | | | $(2-x^{-2})^3 = 8-12x^{-2} + 6(x^{-2})^2 - (x^{-2})^3$ | A1F | | Ft one incorrect coefficient in (a)(i) expansion. | | | | $(2+x^{-2})^3 + (2-x^{-2})^3 = 16+12x^{-4}$ | A1 | 3 | CSO Be convinced. | | | | | | | SC2 for a fully correct solution, not using 'Hence' | | 11. (i |) | $20 \times 4^{3} \times a^{3} = 160$ $1280a^{3} = 160$ $a^{3} = \frac{1}{8}$ $a = \frac{1}{2}$ | M1 | Attempt relevant term | Must be an attempt at a product involving a binomial coeff of 20 (not just ${}^6\mathrm{C}_3$ unless later seen as 20), 4^3 and an intention to cube ax (but allow for ax^3) Could come from $4^6(1+ax/4)^6$ as long as done correctly Ignore any other terms if fuller expansion attempted | |--------|---|--|--------|---|---| | | | | A1 | Obtain correct 1280a ³ , or unsimplified equiv | Allow $1280a^3x^3$, or $1280(ax)^3$, but not $1280ax^3$ unless a^3 subsequently seen, or implied by working | | | | | MI | Equate to 160 and attempt to solve for <i>a</i> | Must be equating coeffs – allow if x^3 present on both sides (but not just one) as long as they both go at same point Allow for their coeff of x^3 , as long as two, or more, parts of product are attempted eg $20ax^3 / 64ax^3$ Allow M1 for $1280a = 160$ (giving $a = 0.125$) M0 for incorrect division (eg giving $a^3 = 8$) | | | | | A1 [4] | Obtain $a = \frac{1}{2}$ | Allow 0.5, but not an unsimplified fraction
Answer only gets full credit, as does T&I
SR: max of 3 marks for $a = 0.5$ from incorrect algebra, eg $1280ax^3 = 160$, so $a = 0.5$ would get M1A1(implied)B1 | | (ii) | $4^6 + 6 \times 4^5 \times \frac{1}{2} = 4096 + 3072x$ | B1 | State 4096 | Allow 46 if given as final answer Mark final answer – so do not isw if a constant term is subsequently added to 4096 from an incorrect attempt at second term eg using sum rather than product | |------|--|------|---|---| | | | B1FT | State $3072x$, or $(6144 \times \text{their } a)x$ | Must follow a numerical value of a , from attempt in part (i) Must be of form kx so just stating coeff of x is B0 Mark final answer | | | | | | B2 can still be awarded if two terms are not linked by a '+' sign – could be a comma, 'and', or just two separate terms | | | | [2] | | SR: B1 can be awarded if both terms seen as correct, but then 'cancelled' by a common factor | | 12. 3. (a) | (2. 2.6. (4. | 64 seen as the only constant term in their | B1 | | | | | |------------|---|--|-----------|--|--|--|--| | 12. | $(2-3x) = 64 + \dots$ expansion. | | | | | | | | | $\left\{ (2-3x)^6 \right\} = (2)^6 + \frac{{}^6C_1}{}(2)^5 (-3\underline{x}) + \frac{{}^6C_2}{}(2)^4 (-3\underline{x})^2 + \dots$ | | | | | | | | | M1: $\binom{6}{1} \times \times x$ or $\binom{6}{1} \times \times x^2$. For either | er the x term or the x^2 term. Requires correct | | | | | | | | binomial coefficient in any form with the co | | | | | | | | | coefficient (perhaps including powers of 2 and
can be "listed" rather than add | | | | | | | | | $^{6}\text{C}_{1}2^{5} - 3x + ^{6}\text{C}_{2}2^{4} - 3x^{2} + \dots$ Scores M0 | | | | | | | | | C12 DX C22 DX TIM BESTES MIS | A1: Either $-576x$ or $2160x^2$ | 1 | | | | | | | 2 | (Allow $+ -576x$ here) | | | | | | | | $= 64 - 576x + 2160x^2 + \dots$ | A1: Both $-576x$ and $2160x^2$ | AlAl | | | | | | | | (Do not allow $+ - 576x$ here) | | | | | | | | 1 | (De not unow - Syou note) | [4 | | | | | | (a) Way 2 | $(2-3x)^6 = 64 + \dots$ | 64 seen as the only constant term in their expansion. | B1 | | | | | | | | M1: $({}^{6}C_{1} \times \times x)$ or $({}^{6}C_{2} \times \times x^{2})$. For | | | | | | | | $\left(1 - \frac{3}{2}x\right)^6 = 1 + \frac{{}^6C_1}{2}\left(\frac{-3}{2}x\right) + \frac{{}^6C_2}{2}\left(\frac{-3}{2}x\right)^2 +$ | either the x term or the x^2 term. Requires | 110111 | | | | | | | $\begin{pmatrix} 1 - \frac{1}{2}x \end{pmatrix} = 1 + \frac{C_1}{2} \left(\frac{1}{2}x \right) + \frac{C_2}{2} \right$ | with the correct power of x, but the other
part of the coefficient (perhaps including
powers of 2 and/or -3) may be wrong or | <u>M1</u> | | | | | | | | missing. The terms can be "listed" rather | | | | | | | | | than added. Ignore any extra terms. | | | | | | | | | A1: Either $-576x$ or $2160x^2$ | | | | | | | | $= 64 - 576x + 2160x^2 +$ | (Allow + -576x here) | AlAl | | | | | | | = 04 - 370x + 2100x + | A1: Both $-576x$ and $2160x^2$ | AIAI | | | | | | | | (Do not allow $+ - 576x$ here) | | | | | | | (b) | Candidate writes down $\left(1+\frac{x}{2}\right)\times\left(\text{their par}\right)$ | rt (a) answer, at least up to the term in x). | | | | | | | | (Condone missing brackets) | | | | | | | | | $\left(1 + \frac{x}{2}\right) (64 - 576x +)$ or $\left(1 + \frac{x}{2}\right)$ | $\left(\frac{x}{2}\right)\left(64 - 576x + 2160x^2 +\right)$ or | M1 | | | | | | | $\left(1+\frac{x}{2}\right)64-\left(1+\frac{x}{2}\right)576x \text{ or } \left(1+\frac{x}{2}\right)64-\left(1+\frac{x}{2}\right)576x+\left(1+\frac{x}{2}\right)2160x^2$ | | | | | | | | | or $64+32x, -576x-288x^2$, $2160x^2+1080x^3$ are fine. | | | | | | | | | | A1: At least 2 terms correct as shown. (Allow $+ - 544x$ here) | | | | | | | | $= 64 - 544x + 1872x^2 + \dots$ | A1: $64 - 544x + 1872x^2$ | AlAl | | | | | | | | The terms can be "listed" rather than | | | | | | | | | added. Ignore any extra terms. | 12 | | | | | | | 1 | | Total 7 | | | | | | | SC: If a candidate expands in descending po | owers of x, only the M marks are available | | | | | | | | e.g. $\{(2-3x)^6\} = (-3x)^6 + {}^6C_1$ | $(2)^2(-3x)^5 + {}^6C_2(2)^2(-3x)^4 +$ | | | | | | | 13. | (a) | $\left(1+\frac{4}{x}\right)^2 = 1+\frac{8}{x}+\frac{16}{x^2}$ (or $1+8x^{-1}+16x^{-2}$) | B1 | 1 | Unsimplified equivalent answers,
e.g. $1 + \frac{4}{x} + \frac{4}{x} + \left(\frac{4}{x}\right)^2$ etc. must be
correctly simplified in part (c) to
one of the two forms in 'solution' | |-----|-----|--|--------|---|---| | | (b) | $\left(1 + \frac{x}{4}\right)^{8} = \{1 + \} \left(\frac{8}{1}\right) \left(\frac{x}{4}\right) + \left(\frac{8}{2}\right) \left(\frac{x}{4}\right)^{2} + \left(\frac{8}{3}\right) \left(\frac{x}{4}\right)^{3} + \dots$ $= \{1 + \}2x + \frac{7}{4}x^{2} + \frac{7}{8}x^{3} + \dots$ | M1 | | Any valid method. PI by a correct value for either a or b or c | | | | $= \{1+\}2x + \frac{7}{4}x^2 + \frac{7}{8}x^3 + \dots$ | AlAlAl | | A1 for each of a, b, c | | | | $\{a = 2, b = 1.75 \text{ OE}, c = 0.875 \text{ OE}\}$ | | 4 | SC $a = 8$, $b = 28$, $c = 56$ or $a = 32$, $b = 448$, $c = 3584$ either explicitly or within expn (M1A0) | | | (c) | $(1+\frac{8}{x}+\frac{16}{x^2})\left(1+2x+\frac{7}{4}x^2+\frac{7}{8}x^3\right)$ | M1 | | Product of c's two expansions
either stated explicitly or used | | | | x terms from expansion of $\left(1 + \frac{4}{x}\right)^2 \left(1 + \frac{x}{4}\right)^8$
are ax and '8' bx and '16' cx | ml | | Any two of the three, ft from products of non-zero terms using c's two expansions. May just use the coefficients. | | | | ax + 8bx + 16cx | A1F | | Ft on c's non-zero values for a , b and c and also ft on c's non-zero coeffs. of $1/x$ and $1/x^2$ in part (a). Accept x 's missing i.e. sum of coeffs. PI by the correct final answer. | | | | Coefficient of x is $2+14+14=30$ | Al | 4 | OE Condone answer left as $30x$.
Ignore terms in other powers of x in the expansion. | | | | Total | | 9 | | 14. | (i) | $(2+5x)^6 = 64 + 960x + 6000x^2$ | Ml | Attempt at least first 2 terms—
products of binomial coeff and
correct powers of 2 and 5x | Must be clear intention to use correct powers of 2 and $5x$ Binomial coeff must be 6 soi; 6C_1 is not yet enough Allow BOD if 6 results from 6f_1 Allow M1 if expanding $k(1+{}^5f_2x)^6$, any k | |------|--|-----------|---|--| | | | Al | Obtain 64 + 960x | Allow 2 ⁶ for 64
Allow if terms given as list rather than linked by '+' | | | | Ml | Attempt 3rd term – product of
binomial coeff and correct powers
of 2 and 5x | Allow M1 for $5x^2$ rather than $(5x)^2$
Binomial coeff must be $15 \text{ soi; } ^6\text{C}_2$ is not yet enough
Allow M1 if expanding $k(1+\frac{5}{2},x)^6$, any k
$1200x^2$ implies M1, as long as no errors seen (including
no working shown) | | | | A1
[4] | Obtain 6000x ² | A0 if an otherwise correct expansion is subsequently spoiled by attempt to simplify eg 4 + 60x + 375x ² If expanding brackets: Mark as above, but must consider all 6 brackets for the M marks (allow irrelevant terms to be discarded) | | (ii) | (9 + 6cx)(64 + 960x +) | M1* | Expand first bracket and attempt at
least one relevant product | Expansion of first bracket does not have to be correct, but must be attempted so M0 if using $(3 + cx)(64 + 960x)$ No need to see third term in expansion of first bracket Must then consider a product and not just use $6c + 960$ Expansion could include irrelevant / incorrect terms Using an incorrect expansion associated with part (i) can get M1 M1 | | | $(9 \times 960) + (6c \times 64) = 4416$
8640 + 384c = 4416
384c = -4224 | Mld* | Equate sum of the two relevant terms to 4416 and attempt to solve for c | Must now consider just the two relevant terms M0 if additional terms, even if error has resulted in kx BOD if presence of x is inconsistent within equation | | | c =-11 | A1
[3] | Obtain $c = -11$ | A0 for $c = -11x$ | 16. identifying term as $20(2x)^3 \left(\frac{5}{x}\right)^3$ oe **M3** condone lack of brackets; M1 for $[k](2x)^3 \left(\frac{5}{x}\right)^3$ soi (eg in list or table), condoning lack of brackets and M1 for k = 20 or eg $\frac{6 \times 5 \times 4}{3 \times 2 \times 1}$ or for 1 6 15 20 15 6 1 seen (eg Pascal's triangle seen, even if no attempt at expansion) and M1 for selecting the appropriate term (eg may be implied by use of only k = 20, but this M1 is not dependent on the correct k used) 20 000 A1 or B4 for 20 000 obtained from multiplying out $$\left(2x + \frac{5}{x}\right)^6$$ allow SC3 for 20000 as part of an expansion [4] 17. (i) 243 - **B1** 1 State 243, or 3³ - (ii) $2^{\text{nd}} \text{ term} = 5 \times 3^4 \times (kx) = 405kx$ $3^{\text{rd}} \text{ term} = 10 \times 3^3 \times (kx)^2 = 270k^2x^2$ Obtain 405k as coeff of x $405k = 270k^2 \Rightarrow k = 1.5$ M₁ **B1** Attempt coeff of x^2 A1 Obtain 270k2 M1 Equate coefficients and attempt to solve for k A1 5 Obtain k = 1.5 (ignore any mention of k =0 (iii) $10 \times 3^2 \times 1.5^3 = 303.75$ M1 Attempt $10 \times 3^2 \times k^3$ - **A1** 2 Obtain 303.75 (allow 303.75x³) - 8 | 18. | (a) | Binomial seen or implied | | |-----|-----|--------------------------|--| | | | 0.6228 - 0.3497 | | | | | = 0.273 (3 sf) | | | | | Mills and the second | | | M1 | by use of table or ${}^{9}C_{6}$ or $(\frac{2}{3})^{p}(\frac{1}{3})^{q}(p+q=9)$ | Eg 0.6228 seen | |-----|---|----------------| | M1 | ${}^{9}C_{6}(\frac{1}{3})^{3}(\frac{2}{3})^{6}$ | | | Al | 1792
6561 | | | [3] | | |